Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Da-Qi Wang, ${ }^{\text {a }}$ Ai-Yun Fu ${ }^{\text {b }}$ * and
Jin-Yu He
${ }^{\text {a }}$ Department of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China

Correspondence e-mail:
aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.025$
$w R$ factor $=0.065$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(ethylenediamine- $\kappa^{2} N, N^{\prime}$)zinc(II) bis(1,2-di-cyanoethylenedithiolato- $\kappa^{2} S, S^{\prime}$)cuprate(II)

The title complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]$, exists as discrete ions. The cation lies on a twofold rotation axis and the anion lies on an inversion centre. The $\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]^{2+}$ cation exhibits a distorted octahedral geometry. In the $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]^{2-}$ anion, the $\mathrm{Cu}^{\text {II }}$ atom is in a slightly distorted square-planar environment. The crystal packing is stabilized by hydrogen bonds of the types $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$.

Comment

Recently, we have reported a few transition metal ion complexes with 1,2-dicyanoethylenedithiolate ligands (Fu et al., 2004a,b; Fu et al., 2004; Wang et al., 2004). As an extension of our work on this series of complexes, we report here the crystal structure of the title compound, (I).

The title compound, (I), consists of discrete $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ cations and $\left[\mathrm{Cu}(\mathrm{mnt})_{2}\right]^{2-}$ anions (where en is ethylenediamine and mnt is deprotonated 2,3-dimercaptobutenedinitrile, viz. 1,2-dicyanoethylenedithiolate). As shown in Fig. 1, the $\mathrm{Zn}^{\text {II }}$ atom in the cation has a distorted octahedral geometry formed by six N atoms from three bidentate en ligands. A crystallographic twofold rotation axis in the cation passes through Zn 1 and the centre of the $\mathrm{C} 3-\mathrm{C} 3{ }^{\mathrm{i}}$ bond [symmetry code: (i) $\left.1-x, y, \frac{3}{2}-z\right]$. The two symmetry-independent trans angles of the ZnN_{6} octahedron are 168.83 (10) and 170.18 (8) ${ }^{\circ}$ (Table 1). The other angles are in the range 78.60 (12)$95.19(12)^{\circ}$, indicating a distorted octahedral geometry. The average $\mathrm{Zn}-\mathrm{N}$ bond length of 2.198 (9) \AA is comparable to the value of 2.156 (4) \AA observed in another $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ cationic complex (Fu et al., 2004b).

Atom Cu 1 in the centrosymmetric anion has a slightly distorted square-planar environment; atom Cu 1 lies on a crystallographic inversion centre. The endocyclic chelate bite angle $\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{S} 2$ is 90.97 (2) ${ }^{\circ}$ and the exocyclic angle $\mathrm{S} 1-$ $\mathrm{Cu} 1-\mathrm{S} 2^{\mathrm{ii}}$ is $89.03(2)^{\circ}$ [symmetry code: (ii) $\left.\frac{1}{2}-x, \frac{3}{2}-y, 1-z\right]$. The $\mathrm{Cu}-\mathrm{S}$ average bond length of 2.4393 (6) \AA is comparable

Received 8 November 2004 Accepted 15 November 2004 Online 20 November 2004

Figure 1
The ions of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted. Unlabelled atoms in the cation are related by the symmetry code $\left(1-x, y, \frac{3}{2}-z\right)$. Unlabelled atoms in the anion are related by the symmetry code $\left(\frac{1}{2}-x\right.$, $\frac{3}{2}-y, 1-z$).
to the value of $2.2576(12) \AA$ observed in another $\left[\mathrm{Cu}(\mathrm{mnt})_{2}\right]^{2-}$ anionic complex (Fu et al., 2004).

The amine N atoms in en and the nitrile N and mercapto S atoms of mnt participate in intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, forming a three-dimensional hydrogen-bond network (Fig. 2 and Table 2).

Experimental

$\mathrm{H}_{2} \mathrm{mnt}(1.00 \mathrm{mmol})$ and $\mathrm{NaOH}(2.00 \mathrm{mmol})$ were dissolved in ethanol (20 ml). To this solution, en $(1.5 \mathrm{mmol})$ and an ethanol solution (30 ml) of $\mathrm{ZnSO}_{4}(0.5 \mathrm{mmol})$ and $\mathrm{CuSO}_{4}(0.5 \mathrm{mmol})$ were added dropwise at 313 K . The mixture was stirred for 6 h and part of the solvent was evaporated in a rotary vacuum evaporator. The resulting solution was filtered and left in the air for about 13 d . Large blue block-shaped crystals of (I) were obtained. Elemental analysis found: C $28.45, \mathrm{H} 4.01, \mathrm{~N} 23.57, \mathrm{~S} 21.66 \%$; calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{10} \mathrm{CuS}_{4} \mathrm{Zn}: 28.52$, H 4.10 , N 23.76 , $\mathrm{S} 21.76 \%$.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]$
 $M_{r}=589.58$
 Monoclinic, $C 2 / c$
 $a=11.7722$ (13) \AA
 $b=14.4010$ (16) \AA
 $c=14.9053$ (17) \AA
 $\beta=105.285$ (2) ${ }^{\circ}$
 $V=2437.5(5) \AA^{3}$
 $Z=4$
 Data collection
 Bruker SMART CCD area-detector diffractometer
 φ and ω scans
 Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
 $T_{\text {min }}=0.495, T_{\text {max }}=0.670$
 6257 measured reflections

$D_{x}=1.607 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3197 reflections
$\theta=2.3-26.3^{\circ}$
$\mu=2.22 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, blue
$0.35 \times 0.27 \times 0.18 \mathrm{~mm}$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.065$
$S=1.02$
2142 reflections
138 parameters

Figure 2
The packing of (I), viewed along the a axis. $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding interactions are shown as dashed lines.

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{S} 1$	$2.2597(6)$	$\mathrm{Zn} 1-\mathrm{N} 1$	$2.1958(18)$
$\mathrm{Cu} 1-\mathrm{S} 2$	$2.2816(6)$	$\mathrm{Zn} 1-\mathrm{N} 3$	$2.211(2)$
$\mathrm{Zn} 1-\mathrm{N} 2$	$2.1860(19)$		
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{S} 2^{\mathrm{ii}}$	$89.03(2)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 3$	$93.34(8)$
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{S} 2$	$90.97(2)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$95.03(8)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 2$	$95.19(12)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 3^{\mathrm{i}}$	$170.18(8)$
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	$79.75(7)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 3^{\mathrm{i}}$	$93.61(8)$
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 1$	$92.68(8)$	$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 3^{\mathrm{i}}$	$78.60(12)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1$	$168.83(10)$		

Symmetry codes: (i) $1-x, y, \frac{3}{2}-z$; (ii) $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1A $\cdots \mathrm{N} 5$	0.90	2.63	$3.396(3)$	144
N1-H1B $\mathrm{N}^{\text {iii }}$	0.90	2.48	$3.232(3)$	141
N2-H2A $\cdots \mathrm{S}^{\text {iv }}$	0.90	3.01	$3.702(2)$	135
N2-H2B $3 \cdots \mathrm{~N} 5$	0.90	2.52	$3.348(3)$	153
N3-H3A $\mathrm{S}^{\text {v }}$	0.90	2.77	$3.561(2)$	147
N3-H3B $\cdots \mathrm{S}^{\text {vi }}$	0.90	2.88	$3.655(2)$	145

Symmetry codes: (iii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (iv) $1-x, 1-y, 1-z$; (v) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (vi) $\frac{1}{2}+x, y-\frac{1}{2}, z$.

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{N}-\mathrm{H}=0.90 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

metal-organic papers

SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Science and Technology Office of Dezhou City, Shandong Province, People's Republic of China, for research grant No. 030701.

References

Fu, A.-Y., Wang, D.-Q. \& Yu, T. (2004a). Acta Cryst. E60, m1736-m1737.

Fu, A.-Y., Wang, D.-Q. \& Yu, T. (2004b). Acta Cryst. E60. In the press.
Fu, A.-Y., Wang, D.-Q. \& Sun, D.-Z. (2004). Acta Cryst. E60, m1869m1871.
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Wang, D.-Q., Fu, A.-Y. \& Wei, X.-L. (2004). Acta Cryst. E60, m1872m1874.

