Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Da-Qi Wang,^a Ai-Yun Fu^b* and Jin-Yu He^b

^aDepartment of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China, and ^bDepartment of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China

Correspondence e-mail: aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.003 Å R factor = 0.025 wR factor = 0.065 Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(ethylenediamine- $\kappa^2 N, N'$)zinc(II) bis(1,2-dicyanoethylenedithiolato- $\kappa^2 S, S'$)cuprate(II)

The title complex, $[Zn(C_2H_8N_2)_3][Cu(C_4N_2S_2)_2]$, exists as discrete ions. The cation lies on a twofold rotation axis and the anion lies on an inversion centre. The $[Zn(C_2H_8N_2)_3]^{2+}$ cation exhibits a distorted octahedral geometry. In the $[Cu(C_4N_2S_2)_2]^{2-}$ anion, the Cu^{II} atom is in a slightly distorted square-planar environment. The crystal packing is stabilized by hydrogen bonds of the types $N-H\cdots N$ and $N-H\cdots S$.

Received 8 November 2004 Accepted 15 November 2004 Online 20 November 2004

Comment

Recently, we have reported a few transition metal ion complexes with 1,2-dicyanoethylenedithiolate ligands (Fu *et al.*, 2004*a,b*; Fu *et al.*, 2004; Wang *et al.*, 2004). As an extension of our work on this series of complexes, we report here the crystal structure of the title compound, (I).

The title compound, (I), consists of discrete $[Zn(en)_3]^{2+}$ cations and $[Cu(mnt)_2]^{2-}$ anions (where en is ethylenediamine and mnt is deprotonated 2,3-dimercaptobutenedinitrile, *viz.* 1,2-dicyanoethylenedithiolate). As shown in Fig. 1, the Zn^{II} atom in the cation has a distorted octahedral geometry formed by six N atoms from three bidentate en ligands. A crystallographic twofold rotation axis in the cation passes through Zn1 and the centre of the C3-C3ⁱ bond [symmetry code: (i) 1 - x, y, $\frac{3}{2} - z$]. The two symmetry-independent *trans* angles of the ZnN₆ octahedron are 168.83 (10) and 170.18 (8)° (Table 1). The other angles are in the range 78.60 (12)-95.19 (12)°, indicating a distorted octahedral geometry. The average Zn-N bond length of 2.198 (9) Å is comparable to the value of 2.156 (4) Å observed in another $[Zn(en)_3]^{2+}$ cationic complex (Fu *et al.*, 2004*b*).

Atom Cu1 in the centrosymmetric anion has a slightly distorted square-planar environment; atom Cu1 lies on a crystallographic inversion centre. The endocyclic chelate bite angle S1–Cu1–S2 is 90.97 (2)° and the exocyclic angle S1–Cu1–S2ⁱⁱ is 89.03 (2)° [symmetry code: (ii) $\frac{1}{2} - x$, $\frac{3}{2} - y$, 1 - z]. The Cu–S average bond length of 2.4393 (6) Å is comparable

 \bigcirc 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The ions of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted. Unlabelled atoms in the cation are related by the symmetry code $(1 - x, y, \frac{3}{2} - z)$. Unlabelled atoms in the anion are related by the symmetry code $(\frac{1}{2} - x, \frac{3}{2} - y, 1 - z)$.

to the value of 2.2576 (12) Å observed in another $[Cu(mnt)_2]^{2-}$ anionic complex (Fu *et al.*, 2004).

The amine N atoms in en and the nitrile N and mercapto S atoms of mnt participate in intermolecular $N-H \cdots N$ and $N-H \cdots S$ hydrogen bonds, forming a three-dimensional hydrogen-bond network (Fig. 2 and Table 2).

Experimental

H₂mnt (1.00 mmol) and NaOH (2.00 mmol) were dissolved in ethanol (20 ml). To this solution, en (1.5 mmol) and an ethanol solution (30 ml) of ZnSO₄ (0.5 mmol) and CuSO₄ (0.5 mmol) were added dropwise at 313 K. The mixture was stirred for 6 h and part of the solvent was evaporated in a rotary vacuum evaporator. The resulting solution was filtered and left in the air for about 13 d. Large blue block-shaped crystals of (I) were obtained. Elemental analysis found: C 28.45, H 4.01, N 23.57, S 21.66%; calculated for C₁₄H₂₄N₁₀CuS₄Zn: 28.52, H 4.10, N 23.76, S 21.76%.

Crystal data

2142 reflections

138 parameters

$\begin{split} & [Zn(C_2H_8N_2)_3][Cu(C_4N_2S_2)_2] \\ & M_r = 589.58 \\ & \text{Monoclinic, } C2/c \\ & a = 11.7722 \ (13) \text{ Å} \\ & b = 14.4010 \ (16) \text{ Å} \\ & c = 14.9053 \ (17) \text{ Å} \\ & \beta = 105.285 \ (2)^{\circ} \\ & V = 2437.5 \ (5) \text{ Å}^3 \\ & Z = 4 \end{split}$	$D_x = 1.607 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 3197 reflections $\theta = 2.3-26.3^{\circ}$ $\mu = 2.22 \text{ mm}^{-1}$ T = 296 (2) K Block, blue $0.35 \times 0.27 \times 0.18 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.495$, $T_{\max} = 0.670$ 6257 measured reflections	2142 independent reflections 1769 reflections with $l > 2\sigma(l)$ $R_{int} = 0.021$ $\theta_{max} = 25.0^{\circ}$ $h = -14 \rightarrow 14$ $k = -17 \rightarrow 17$ $l = -17 \rightarrow 10$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.065$ S = 1.02	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0371P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Figure 2

The packing of (I), viewed along the *a* axis. $N-H\cdots S$ and $N-H\cdots N$ hydrogen-bonding interactions are shown as dashed lines.

Table 1

Selected geometric parameters (Å, °).

Cu1-S1	2.2597 (6)	Zn1-N1	2.1958 (18)
Cu1-S2	2.2816 (6)	Zn1-N3	2.211 (2)
Zn1-N2	2.1860 (19)		
S1-Cu1-S2 ⁱⁱ	89.03 (2)	N2-Zn1-N3	93.34 (8)
S1-Cu1-S2	90.97 (2)	N1-Zn1-N3	95.03 (8)
N2 ⁱ -Zn1-N2	95.19 (12)	N2-Zn1-N3 ⁱ	170.18 (8)
N2-Zn1-N1 ⁱ	79.75 (7)	N1-Zn1-N3 ⁱ	93.61 (8)
N2-Zn1-N1	92.68 (8)	N3-Zn1-N3 ⁱ	78.60 (12)
N1 ⁱ -Zn1-N1	168.83 (10)		. ,

Symmetry codes: (i) $1 - x, y, \frac{3}{2} - z$; (ii) $\frac{1}{2} - x, \frac{3}{2} - y, 1 - z$.

Table 2	
Hydrogen-bonding	geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1A \cdots N5$	0.90	2.63	3.396 (3)	144
$N1 - H1B \cdot \cdot \cdot N4^{iii}$	0.90	2.48	3.232 (3)	141
$N2-H2A\cdots S1^{iv}$	0.90	3.01	3.702 (2)	135
$N2 - H2B \cdot \cdot \cdot N5$	0.90	2.52	3.348 (3)	153
$N3-H3A\cdots S2^{v}$	0.90	2.77	3.561 (2)	147
$N3-H3B\cdots S2^{vi}$	0.90	2.88	3.655 (2)	145

Symmetry codes: (iii) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (iv) 1 - x, 1 - y, 1 - z; (v) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (vi) $\frac{1}{2} + x, y - \frac{1}{2}, z$.

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$, and N-H = 0.90 Å and $U_{iso}(H) = 1.2U_{eq}(N)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997*a*); molecular graphics:

 $\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

SHELXTL (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the Science and Technology Office of Dezhou City, Shandong Province, People's Republic of China, for research grant No. 030701.

References

- Fu, A.-Y., Wang, D.-Q. & Yu, T. (2004a). Acta Cryst. E60, m1736-m1737.
- Fu, A.-Y., Wang, D.-Q. & Yu, T. (2004b). Acta Cryst. E60. In the press.
 Fu, A.-Y., Wang, D.-Q. & Sun, D.-Z. (2004). Acta Cryst. E60, m1869– m1871.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wang, D.-Q., Fu, A.-Y. & Wei, X.-L. (2004). Acta Cryst. E60, m1872m1874.